Available online at www.sciencedirect.com
Cb JOURNAL OF
SCIENCE C DIRECT®

GEOMETRY anp
PHYSICS

ELSEVIER Journal of Geometry and Physics 56 (2006) 310-321

www.elsevier.com/locate/jgp

Atiyah—Patodi—Singer boundary condition and
a splitting formula of a spectral flow

Kenro Furutarii

Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo,
2641 Noda, Chiba 278-8510, Japan

Received 23 April 2004; received in revised form 14 May 2004; accepted 4 February 2005
Available online 8 March 2005

Abstract

We describe a relation between Atiyah—Patodi—Singer boundary condition and a global elliptic
boundary condition, which naturally appears in formulating a splitting formula for a spectral flow,
when we decompose the manifold into two components. Then we give a variant of the splitting formula
with the Hormander index as a correction term.
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1. Introduction

In the papef5], we formulated and proved a splitting formula of a spectral flow for a
continuous family of first-order selfadjoint elliptic differential operatfds};c|o,1) defined
on a closed manifold. This is an addition formula of a spectral flow when we decompose a
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manifold into two components along a hypersurfageM = M_ Uy M, ,dM4 = X. For

such a family{A,} considered on the whole closed manifof an integer, called spectral

flow, is well defined, and to “observe” this quantity we cut the manifold along a hypersurface,
then we can “observe” from the hypersurface a quantity “Maslov index”, which is a curve
of boundary data of solutions of operators. This quantity can be understood as the spectral
flow. This is just a spectral flow formuld5,12] where manifolds need not be separated
into two components. If the manifold is separated into two parts by the hypersurface,
then we will have two Maslov indexes which together give the whole information of the
spectral flow. For this observation we must make clear which family we are observing,
i.e., to get a family of selfadjoint Fredholm extensions we must impose a suitable elliptic
boundary condition on the familyA;} when we restrict the operators on each component
M. This condition appears in a natural way in our formulation to write down the splitting
formula and reflects the influence from one side to other side. On the other hand, Atiyah—
Patodi—Singer boundary condition is described based on the boundary data. Nevertheless,
these two are relating each other in the case of the operators of the product form near the
hypersurface.

The purpose of this paper is to describe a relation between our global elliptic bound-
ary condition and Atiyah—Patodi—Singer boundary condition. There are several such
splitting formulas[3,4,10,14,12]and the boundary condition treated there is mostly
Atiyah—Patodi-Singer boundary condition. So the result in this paper will give us a
sight of our global elliptic boundary condition for operators satisfying suitable analytic
assumptions.

We follow the theory of symplectic Hilbert spaces, especially of the Fredholm-
Lagrangian—Grassmannian and the Maslov index in the infinite dimension which were
discussed in the papd 5] precisely (also sef,2,13). In Section2, we explain a global
elliptic boundary condition appearing in the splitting formula for a spectral flow and state a
relation between it and Atiyah—Patodi—Singer boundary condition in terms of the Fredholm—
Lagrangian—Grassmannian.

In Section3, first we recall al.>-reduction theorenfib] and by applying this we give a
proof of Theorem 2.7

In Section4, as an application ofheorem 2.7we give a variant of a splitting formula
of a spectral flow with Brmander index as a correction term.

2. A global elliptic boundary condition

In this section, we explain an elliptic boundary condition we introduced in
[5].

Let A be a first-order selfadjoint elliptic differential operator defined on a real vector
bundleE on a closed manifold. Let X be a hypersurface @f along which/M is separated
into two componenty, M = M_Uyx My, 0My = X, and we denote the first-order
Sobolev space o (resp. M) taking values in the real vector bundieby H(M, E)
(resp.HY(My, |y, )). For the subspace (M., E 5, ) with vanishing boundary values
we denote it byH3 (M, Ejp,). These are the domains of the minimal closed extensions
of the operatorst considered orCg°(M+\ X, Ejy,\x) and we denote them b =
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H&(Mi, E|a.)- Thenwe denote byl their adjoint operators consideredaf and bny\E4
their domains of definitions, i.ef, € ’DR—L/I if f e Lao(My,Ejpm.)andA(f) € Lo(M+, Ejp,)
in the distribution sense.

We must put two Assumptior(gl) and(a2) on the selfadjoint elliptic operate:

(al). A satisfies the unique continuation property with respect to the hypersuHace
that is,

Ker(A%) N DL = {0). (2.1)

(a2). On a tubular neighborhoolf’ = (-1, 1) x X the operaton is of the product form,
that is,
a
A=o ( + Bo) , (2.2)
ou
wheres is a bundle map oB;x which does not depend on the normal variable (—1, 1),
the operatoBy is a selfadjoint elliptic operator ab and also does not depend on the normal
variableu.
We identify VN M_ = (-1,0] x YandVN M, =[0,1) x X.
The selfadjointness of the operatbimplies that

o’ = —ld, lo = —o (2.3)
o00oBg+ Bpoo =0, (2.4)

where the transpose is taken with respect to a suitable metric on the vector buRde
denote the inner product on tlie sections off by (-, -). Theno defines an almost complex
structure and a compatible symplectic structurd.e¥, E|x)) = La(X).

Let Do be a subspace iH}(M_, E ) _) defined by

Do = {f € H(M_, By )P f € HY(M, E)such thatfiy_
= fandA(f) = 0onM,}.

Hereafter we will state properties only for the cage, but shall use the corresponding
results forM ., if necessary.

We denote the restriction of* to ©g by Ap,, then under the two Assumptio(esl)and
(a2)we have

Proposition 2.1. The operator Ap, satisfies the inequality:

I fll2 = clAng(NI+ IS, VS €Do (2.5)

with a positive constant ¢ > 0, where || f||1 denotes the first-order Sobolev norm. And so
Aq, is selfadjoint and has compact resolvents.

This property is basic to staféheorem 2.7We already made use of this property in our
papei5]. The proof is given upot >-reduction theorem of the Maslov index in the infinite
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dimension. In the next section, we explain some part of a proof of this proposition, and
together with the help of Rellich’s Theorem we proMeeorem 2.7

Remark 2.2. If A is invertible onH(M, E), then the same holds fetp, as in the above
proposition without Assumption®1) and(a2), because we have

iy ) < CO rsgarmy + 1P Non) = CULF iy + 1 N2oon)
= C/”f”Hl(M,,E\M_)

for f € HY(M, ) satisfyingA(f) =0 onM,.

Let {¢x}kez\0y be the eigenvalues of the operatBs and we denote correspond-
ing orthonormal eigensections Kbyy}. From the propertieg2.3) and (2.4)we have
by=—4_>0fork=No+1, No+2,... with Ng =1/2-dimKer(Bpg) (see Remark
2.4 and¢; = 0for 0 < |k| < No.

For a sectiorp on X' let

o= > ap

keZ\{0}

be the eigensection-expansion, then the Sobolev sH&CE, E, x) of orders € R on X' is
characterized as

H(ZEx)=S¢= > apl Y lalPltx® < oo
keZ\{0} keZ\{0}

Let D9 5 be a subspace iH(M_, E|y ) such that
Q%PSZ fEHl(M—7E|M7)|if f‘z

= Y ap. thena, =0fork=1,23,... 3, (2.6)
keZ)\{0}

and we denote the restriction df to D9 . by Ai’%ps' This non-local boundary condition
(2.6)is called “Atiyah—Patodi—Singer boundary condition”. Then

Proposition 2.3. ([1]) The operator Ago defined on 99‘ ps IS a selfadjoint operator with
APS
compact resolvents.
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Now let 8~ = Dy /D, be the space of boundary values. Here the maximal do@gin
is equipped with the norrh- ||© given by the graph inner product:

(£8)° = (fg) + (A (f), A" ().

The spaces™ has a structure of a symplectic Hilbert space with the symplectic form

o([f1. [g]) = (AZ(f). &) — (L AZ(Q)), f g€Dy. (2.7)
and is realized in the distribution space bn

f= Y ae with

keZ\ (0}

B~ = {f e HY(3, E5)

k>0 k<0

x > lexlPlr < coand > el x|t < oo}
f= Z Ck@k, With Z lex |2y < OO}

= {f € HY?(2,Ex)
k>0 k>0

i {f e HYAZED)f = cupr. with > lee?1e] ™t < oo}

k<0 k<0
=07 +6-.

For the determination of the spage see[8,1].

Remark 2.4. By the conditiongal)and(a2) we know that KerBy) is a finite dimensional
symplectic subspace gf, so that we choose eingensectidpg} for 0 < |k| < Ngin such
a way that the subspaces spannedday_ n, <k <o and{ex }o<k<n, are mutually transversal
Lagrangian subspaces in K&).

Remark 2.5. Of course for smooth sectionsBfy, (and also fot ,-sections) the symplectic
structure defined by coincides withw defined in(2.7).

Lety™ : ©y; — B~ bethe projection map, then the image(Ker(A* )) is a Lagrangian
subspace and the pairg ((Ker(4*)), y~ (D9 55)) and ¢~ (Ker(A*)), y~(Do)) are Fred-
holm pairs. The space™(Ker(A4*)) is called Cauchy data space. Further, for each La-
grangian subspack c g~ the operatorA’i‘(y,),lm is a selfadjoint realization and if

(A, y~ (Ker(A*))) is a Fredholm pair, theﬂlil(y,),l(k) is a selfadjoint Fredholm operator.
Remark 2.6. Note that the Lagrangian property of the Cauchy data spa¢ker(A*))
would not be trivial. To prove this property we rely on the existence of at least one selfad-
joint realization ofA o (=restriction of A* to a suitable subspace ®y,;) with compact
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resolvents (or a unbounded selfadjoint Fredholm extension). For our case this realization is
given by the operataf 5o , and for which proof we use the Assumpti@®).
APS

We denote byF A, (87) the space of Lagrangian subspagei® 8~ such that &, A) is
a Fredholm pair:

FA,(B7) ={u C B~ |nis aLagrangian subspace apd ) is a Fredholm paiy.
Now we have

Theorem 2.7.
fA)/f(’Do)(:B_) = fAV_(D?&PS)('B_)’ (28)

more precisely the orthogonal projection operators onto the subspace y~ (Do) and that onto
the subspace y‘(@% ps) = 0 differ by a compact operator.

We prove this in the next section.

Remark 2.8. Let H be a symplectic Hilbert space and we regaras a complexification

of a Lagrangian subspageThen a Lagrangian subspaeés of the formU(1) = u with a
unitary operatol/ of the form Id+compact operator, thenF A, (H) = FA,(H). Also this
property is equivalent to the condition that the difference of the orthogonal projection opera-
tors onto the Lagrangian subspagzesdu is compact. For such two Lagrangian subspaces

A andu and two arbitrary Lagrangian subspaegandvy in FA, (H) = FA,(H) we have

a well-defined integer(vo, v1; A, 1), called Hbrmander index. This is the difference of the
Maslov indexes

or(vo. v1; A, 1) = Mas({c(1)}, &) — Mas({c(1)}. w).

where the patlic()} is in FA, (H) connectingg andvs and the difference does not depend
on any such paths. Here the Maslov inddas({c;}, A) is , in a sense, the intersection
number with the “Maslov cycled, = {u € FA,(H)|u N A # {0}} [9,6].

3. Symplectic reduction theorem

In this section, after recalling a symplectic reduction thedj@nwe proveTheorem 2.7

Let (B, wp) and (L, wr) be two symplectic Hilbert spaces is the symplectic form
and so on) with decompositions by Lagrangian subspéce8,, L_ and L (Polarized
symplectic Hilbert space):

B=0_+6,, L=L_+L,. (3.1)
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We assume that there are continuous injective magpsL, — 64 andi_ : 6_ — L_
having dense images such that

wg(iy(a), x) = wp(a,i-(x)) foranyx e 6_ anda € L. (3.2)

Then

Proposition 3.1. ([6]) There is a continuous map t : FAg_(B) — FAp_(L) such that for
any continuous curve {c(t)}:c[0,1] in FAg_(B)

Mas({c(1)}, 6-) = Mas({z(c(1))}, L-).
The mapr is defined in the following way:
tw={b+aecL=L,+L_|Pxef_ suchthatiy(h)+xcv anda=i_(x)}.

For any decomposition ¢- = F + F’ by closed subspacedqdim F < +o0) andF’, we
can decomposé ; by closed subspaces in such a way that= G + G’ with dimG =
dim F andG +i_(F) is a symplectic subspace in Also in this case the subspaée+
i+ (G) is a symplectic subspace th Moreover, the subspacés+ iy (G’) andG + i_(F’)
are Lagrangian subspaces.

Then by replacing_ with F’ + i, (G), 6+ with F +i(G’), L_ with G +i,(F’") and
Ly withi_(F) + G’ and also by replacing the maksin an obvious way we have a similar
situation as in(3.1) and (3.2)We shall denote these new mapd byalthough the resulting
mapst between Fredholm-Lagrangian—-Grassmanniang_(B) = FAr i, (6)(B) and
FAL_ (L) = fAGer(L) coincide.

Note that the arguments above are guaranteed that the dpand<. are Hilbert spaces
(se€[11] for symplectic Banach spaces).

We apply this proposition to the caBe= g™ = 91 + 6 andL =g~ = 0, +6_.Note
that the spacg™ is defined as follows:

Br=qfeHY D Ex)f= ) cwp with
keZ\{0}

x Z lex 267t < ooandz lek1€x| < 0o

k>0 k<0
- {f e B B | = Y crn with Y et < °°}
k>0 k>0

+ {f e HY*(2,E x)

F=> crpe with > fex*la] < oo} =60F +067.

k<0 k<0

The mapd.. here are given by inclusion maps.
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Since ¢t (Ker(AY)), 61 is a Fredholm pair, we can find a finite dimensional subspace
F in 67 and a corresponding finite dimensional subspéce 6, such that we have
decompositions

0f =F+F 6, =G+G’

with suitable closed subspacgsandG’ and that

F' +i(G) andy ™ (Ker(AY)) are transversal.

When we putF’ +i,(G) = A_ andF + i, (G’) = A, we have a decompositight™ =
A+ + A_ with Lagrangian subspaces. and the Cauchy data space is expressed as a
graph of a continuous mag : A, — A_. Then for such a Lagrangian subspace we have
t(yT (Ker(A%))) is the graph of the majp. o £ o i;.. Note here the maps. should be de-
fined in a suitable way according to the choices of the subspaned G (for exampIeLr
is defined as; on F’ andi=* oni_(G)).

Now the original maps; : 6, —>~0j[ andi_ : ¥t — 9~ are compact operators by Rel-
lich’s Theorem and so the new maigsare also compact.

Let us denote the orthogonal projection operator to a closed subgpbgér. Then
the difference

Pi,(F)+6" — Pr(ker(ar)) (3.3)

is a compact operator and the difference
Pi (ry+c' = Py (3.4)

is a finite rank operator.
By the definition of the map we havey~ (Do) = t(y*(Ker(A%))), and (3.3) and
(3.4) imply that the difference of the orthogonal projection operators onto the subspaces
y‘(@%PS) =0, andy~ (Do) is a compact operator. So this gives us a proofleéorem
2.7.

4. Cauchy data spaces and Hormander index

LetLy(X) = L4 + L_ bethe polarization by 4, whereL . is theL,-completion of the
space spanned Hyy }r-0 and L _ is the Lo-completion of the space spanned oy }x<o.
Then by applying above arguments to the two pars & g+ + B, Lo(Z) = L_ + L)

and B~ = B~ + B, Lo(X) = L_ + L) of polarized symplectic Hilbert spaces we have
four Lagrangian subspaces

y* (Ker(AL)) N Lo(%), L+
of Ly(X) which satisfy following properties (h1) and (h2):

(h1) y* (Ker(A43)) N La(X) and Ly are Fredholm pairs,
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(h2) y* (Ker(A4%)) N Lo(X) = U+(L+), whereUy are unitary operators of the form 4l
compact operator

Here we identifyLo(X) = L, ® C.
Now we can define the &mander index

on(y"(Ker(A})) N Lo(Z), L1y~ (Ker(AL)) N Lo(X), L-) (4.1)

of these four Lagrangian subspaces. Then its absolute value will expresgmanetry of
solution spaces of the operatdrunder the decomposition af along a hypersurfac.

So, if there is aymmetry among these four Lagrangian subspaces, the value must vanish.
In fact

Proposition 4.1. Assume that o(y*(Ker(A%)) N Lo(X)) = vy~ (Ker(A*)) N Lo(X), then
the Hormander index of these four Lagrangian subspaces vanishes:

on(y™(Ker(A})) N Lo(X), L4y~ (Ker(A%)) N Ly(X), L-) = 0.

Proof. Firstwe assume that"(Ker(A%)) N Lo(X)andL_ are transversal. Then the space

+(Ker(A )) N Lo(X) is written as a graph of a compact operéafar L, — L_ such that
coTisa selfadjomt operator ah and the spacg™ (Ker(A4*)) N Ly(X) is also written as
agraph ofthe mapo o T o 0. These imply that the curve of Lagrangian subspaces given by
the graphs of—7 - 0 o T o 0}p<,<; is always transversal to both pf" (Ker(A?% )) N Lo(X)
andL. This curve is connecting~(Ker(A4*)) N Ly(X) andL_. Hence we have

on(y (Ker(AL)) N Lo(X), L—; y* (Ker(A})) N La(X), Ly) =

If y+(Ker(A )) N Lp(X) andL_ are not transversal, then we decompose the Lagrangian
subspace*(Ker(A )) N L2(X) into the orthogonal sum

YT (Ker(A%)) N La(X) = Lo+ v,

wherefo = (y*(Ker(A%)) N Lo(X)) N L_ andv is the orthogonal complement @ in
yT(Ker(A%)) N Lo(X). Also we decomposé_ = £o+ (L_ N Zi) =fo+{_andL; =
o(to) + (L4 No(Lo)t) = o (ko) + L. Now we have

on(y” (Ker(A%)) N La(X), L_; y* (Ker(A% ))ﬂLz(E) Ly)
= on (0(£o), £o; Lo, 0(€0)) + o (0(v), £—;v, £4) =

by applying the first arguments to the second term.

Note thaty~(Ker(A4*)) N L2(X) = o(¢o) + o(v) is an orthogonal decomposition and
the vanishing of the first term follows from a skew-symmetric property of thentdnder
index. O
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5. A splitting formula of a spectral flow

First we state a splitting formula for a spectral flow when we decompose a manifold into
two components. Then we give another form of it by replacing the boundary condition with
Atiyah—Patodi-Singer condition.

Let {C:}s¢[0,1) be a continuous family of symmetric bundle mapstoiind we assume
that each of the operator in the famflyt + C,} satisfies the conditior(®?) and(a2) where
(@) is:

(al’). There exists amg > 0 such that for anys| < €g and anyr € [0, 1] the operators
A + C; + s satisfy theunique continuation property with respect to the hypersurface

Ker(A% 4 C; +s5) N DE = {0} (5.1)
HereC; is regarded as a bounded selfadjoint operatok g(#/, [E).

Now we have continuous families of Cauchy data spaéd&er(A*% + C;)) (C; should

be considered as acting on the srf@@, respectively, and both of which are invariant under
this action). The splitting formula is stated as follows:

Theorem 5.1. [5]

St({A + C/}) = St({Ap, + Ci}) + SE({Ap, + C1}), (5.2)
where

Do={feH (M—,Ew,)faf € HY(M,E) such that

Jis- = f and (A + Co)(J) = 0 on M.}
and

D1 = (g e HY (M, E|M+)|3§ € HY(M,E) such that

g m, =gand (A+ C1)(g) =0onM_}.

Remark 5.2. Our proof of the general spectral flow formula bases on the profettyand
(a2), and by making use of the general spectral flow formulaanteduction theorem we
prove the splitting formula abové¢s]).

Let DY 55 be the space defined (@.6)for A replaced byA + Co and denote byD? p5
the similar space

@114PS =< f€ Hl(M+,E|M+)|if fiz

> @i theng =0fork =1,2.3,... 5. (5.3)
keZ\(0)
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Note that the sectiong/} are now orthonormal eigensections of the tangential operator
Bj in the product form

d
A+C1=G<+B1> (5.4)
ou

corresponding to the parametet 1 and should be chosen in such away as noted in Remark
2.4

We have continuous curveg/~(Ker(A* + C;))} of Cauchy data spaces in the
Fredholm-Lagrangian—Grassmannigfilop,(87) = }—ADﬁps(ﬂ_) and {y*(Ker(A% +

Cy))}in ‘7:/‘331(,3-"_) = ng}‘PS(ﬁ—k)-

The Hormander index is defined for four Lagrangian subspaggsg:1, vy~ (Do) and
y‘(@%PS), whereu; € FApy(87) = fADS\PS(ﬂ_)' also defined fowg, v1, (D7) and

yH(®Yps) (vi € FAg,(B%) = FAgi, (1)), as noted in Remarf2.8)
Since

Sf({An, + C1})
= Mas({y~ (Ker(A* + C,))}. ¥~ (D)) = Mas({y~ (Ker(A* + C,)}. y~ (D3 ps))
+on(y ™ (Ker(A* + Co)). y~(Ker(A* + C1)); ¥~ (Do), v~ (D3 ps))
we have
Theorem 5.3.
SE({A + C1}) = Mas({y ™ (Ker(A* + C))} ¥~ (D% ps))
+o(y~(Ker(A* +Co)), ¥~ (Ker(A* + C1)); ¥~ (Do), ¥~ (D ps))
+Mas({y " (Ker(A* + C))}., y* (D ps)
+on(yT(Ker(A% + Co)). v (Ker(A%+C1)); v (D1). v (D) ps)
= Sf({AQ% o C}) + Sf({A,Dﬁ T C}) + oy (Ker(A* + Co)),

Y~ (Ker(A* + C1)); ¥y~ (D0). ¥~ (D ps))+ou (v (Ker(A% + Co)).
YT (Ker(A% + C1)); v (D1), y (D ps))-

Corollary 5.4. If the family {A + C;} is a loop, i.e., Co = C1, then we have
SI({A + Ci}) = St(fAgo  + Ci)) +St({Ag1 + Ci)). (5.5)

Remark 5.5. Although it holds the spectral flow formula expressed in terms of the Maslov
index of Cauchy data spaces under the Assumgad?, it would not be clear whether the
splitting formulas of the spectral flow like above formulas hold always without the second
Assumption(a2) Such assumptions are fit to the framework of the symplectic Hilbert
space theory, after once the spagésare determined. However, it would be expected that
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generalizations of splitting formula of spectral flow and the index similé&t.thwithout the
Assumption(a2) would be carried out through a further analysis of the pseudo-differential
operator theory including the Calder projector and the operat@g(Ker(Ai)).
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